isomorphic varietyies - определение. Что такое isomorphic varietyies
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое isomorphic varietyies - определение

Computably isomorphic

Isomorphic keyboard         
MUSICAL INPUT DEVICE CONSISTING OF A 2D GRID OF BUTTONS OR KEYS ON WHICH ANY GIVEN SEQUENCE/COMBINATION OF MUSICAL INTERVALS HAS THE "SAME SHAPE" ON THE KEYBOARD WHEREVER IT OCCURS—WITHIN A KEY, ACROSS KEYS, ACROSS OCTAVES, AND ACROSS TUNINGS
Isomorphic keyboards; Tuning invariance; Tuning-invariant; Tuning invariant
An isomorphic keyboard is a musical input device consisting of a two-dimensional grid of note-controlling elements (such as buttons or keys) on which any given sequence and/or combination of musical intervals has the "same shape" on the keyboard wherever it occurs – within a key, across keys, across octaves, and across tunings.
Koebner phenomenon         
  •  Heinrich Köbner (1838–1904)
SKIN LESION ON LINES OF TRAUMA
Koebner Phenomenon; Koebnerization; Koebner's phenomenon; Isomorphic Koebner phenomenon; Köbner; Koebner; Koebnerize; Koebnerized; Koebnerizing; Köbnerization; Köbnerizing; Köbnerized; Köbnerize; Köbner phenomenon
The Koebner phenomenon or Köbner phenomenon (, ), also called the Koebner response or the isomorphic response, attributed to Heinrich Köbner, is the appearance of skin lesions on lines of trauma.Various grammatical forms of "Koebner phenomenon" include: "Koebnerization", and "to Koebnerize".
Computable isomorphism         
In computability theory two sets A;B \subseteq \N of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f \colon \N \to \N with f(A) = B. By the Myhill isomorphism theorem,Theorem 7.

Википедия

Computable isomorphism

In computability theory two sets A ; B N {\displaystyle A;B\subseteq \mathbb {N} } of natural numbers are computably isomorphic or recursively isomorphic if there exists a total bijective computable function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } with f ( A ) = B {\displaystyle f(A)=B} . By the Myhill isomorphism theorem, the relation of computable isomorphism coincides with the relation of mutual one-one reducibility.

Two numberings ν {\displaystyle \nu } and μ {\displaystyle \mu } are called computably isomorphic if there exists a computable bijection f {\displaystyle f} so that ν = μ f {\displaystyle \nu =\mu \circ f}

Computably isomorphic numberings induce the same notion of computability on a set.